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ABSTRACT

An efficient approach for simultaneous aerodynamic analysis and design optimization is

presented. This approach does not require the performance of many flow analyses at each

design optimization step, which can be an expensive procedure. Thus, this approach brings

us one step closer to meeting the challenge of incorporating computational fluid dynamic codes

into gradient-based optimizattion techniques tbr aerodynamic design. An adjoint-variable method

is introduced to nullify the efl_ct of the increased number of design variables in the problem

lbrmulation. The method has been successfully tested on one-dimensional nozzle flow problems,

including a sample problem with a normal shock. Implementations of the above algorithm are

also presented that incorporate Newton iterations to secure a high-quality flow solution at the

end of the design process, hnplcme,ltations with iterative flow solvers are possible and will be

required lbr large, multidimensional flow problems.
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1.0 NOMENCLATURE
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Superscripts

i

n, m

Adjoint variables

Local cross-sectional area

Design variables

Specific internal energy

Specific total energy

Quasi-one-dimensional Euler equation flux vector

Number of constraints

Pressure

State variables (aerodynamic field variables)

Nonlinear state equations or residual of flow equations

Penalty function

Quasi-one-dimensional Euler equation source vector

time

Flow speed

Nozzle axial coordinate

Step size (during one-dimensional search)

Ratio of specific heats

Change in quantity

Merit function

Density

Side-constraint functions

Objective function

ith side constraint

x-coordinate discretization index

Objective function

Subiteration index

Iteration indices



T Matrix transpose

" Target values

" Approximate operator

* New (or updated) quantity

Abbreviations

ADS

CFD

CPU

FD

NR

QA

SAADO

Automated Design Synthesis

Computational fluid dynamics

Central processing unit

Finite difference

Newton-Raphson iterations

Quasi-analytical

Simultaneous aerodynamic analysis and design optimization

2.0 INTRODUCTION

A typical aerodynamic problem can be highly nonlinear, and its solution can consume a great

deal of computer resources in terms of both memory and central processing unit (CPU) time.

This demand poses a challenge for incorporating advanced computational fluid dynamics (CFD)

software into gradient-based optimization techniques for aerodynamic design. In this study,

a strategy is proposed whereby the objective function and constraint violations are reduced;

simultaneously, the aerodynamic field equations are solved (i.e., the final steady-state numerical

solution of these equations is achieved). With this approach, the aerodynamic field variables

are treated as additional design variables, and the aerodynamic residual equations are considered

to be additional equality constraints. As a consequence, the steady-state aerodynamic equations

are satisfied only at the final optimum solution. With this new approach, overall computational

expense is expected to be reduced in comparison with the conventional optimization method (for

which many repeated steady-state aerodynamic analyses are performed during the optimization



process).Two quasi-one-dimensionalnozzle-flowproblems are considered to demonstrate the

initial numerical testing of the scheme. In addition, the feasibility of extending the methodology

to multidimensional aerodynamic problems is demonstrated.

Other recent studies involve the development of strategies for simultaneous aerodynamic

analysis and design optimization. For example, the algorithm developed by Rizk [1, 2] first

updated the design variables at each design optimization iteration with a gradient-projection

method and then updated the field (state) variables with several flow-solver iterations. The

gradients of the objective and side-constraint functions were calculated for the current values

of the flow variables by the method of finite differences. The inverse design scheme of Drela

[3] employed a streamline tbrmulation of the Euler equations; in addition, the locations of the

streamlines that define the shape of the airfoil were taken as the design variables. The optimum

design and the corresponding flow solution were simultaneously obtained by solving a global

system of equations that included (at each optimization iteration) the linearized flow equations

and the necessary conditions of the minimization problem.

Design optimization techniques are generally iterative in nature; the fact that simultaneous

analysis and design is efficient only when the method of analysis is also iterative is noted by

ltaftka [4, 5]. Recent works by Orozco and Ghattas [6--8] and Ta'asan et al. [9, 10] investigated

techniques to improve the computational efficiency and storage requirements for simultaneous

aerodynamic analysis and design optimization. The fbrmer method examined the sparsity of the

Jacobian and Hessian matrices; the latter method took advantage of the multigrid method.
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Two important concernsexist for the present study: the increased size of the problem

(because the aerodynamic field variables are treated as design variables) and the quality of

the aerodynamic solution at the end of the design process (measured by the 12 norm of the

aerodynamic residual equations). The first concern is addressed by employing the adjoint-

variable method; the resulting equations are similar to those derived in reference [6]. The

second concern is addressed by adding flow-solver iterations between the design iterations in

the optimization procedure.

3.0 OPTIMIZATION METHODOLOGY

A typical engineering design optimization problem attempts to find the best design b that

minimizes the objective function, satisfies the constraints, and satisfies a set of equilibrium

conditions (i.e., a set of state equations). Mathematically, this optimum design can be stated as

lnin

b _Po(q(b), b) (1)

which is subject to

_Pi(q(b), b) _< 0 (i = 1,2, ..., m) (2)

where the vectors Q and b are the aerodynamic field and design variables, respectively, and qo

and qJi are the objective and side-constraint functions, respectively. In an aerodynamic problem,

the field variables usually represent the density, velocity components, and pressure, for example.

The field variables describe the physical behavior of the system to be designed and are related

to the design variables through the nonlinear state equations, which are defined symbolically as

R(Q(b),b) = 0 (3)



As is characteristic of most realistic aerodynamic problems, the dimension of the vector b is

of the order of tens to several hundreds; in contrast, the dimensions of the vectors Q and R

are of the order of thousands to even millions. A solution Q for Eq. (3) for a given b can

be not only difficult to find but computationally intensive as well. However, possibly hundreds

of such analyses (i.e., repeated solutions of Eq. (3)) are required for the conventional design

optimization process. The conventional design optimization process is explained in greater

detail in the following section.

3.1 Conventional Approach For Aerodynamic Design Optimization

First, to gain a better understanding of the new algorithm, the general procedure for the

conventional approach to a typical aerodynamic design optimization problem is outlined in detail.

From an initial design b, a typical gradient-based design optimization scheme first solves for

the field variables Q with the state equations (Eq. (3)) and then evaluates the change in design

Ab that reduces the change in the objective function and corrects the constraint violations. This

most favorable Ab is obtained by solving a linearized optimization problem

rain (d_po'_Ab q_o(Q(b),b) + db ]Ab (4)

which is subject to

• i(q(b),b) + \ ,%-] Ab _< 0 (i = 1,2,...,m) (5)

where Eqs. (4) and (5) are linearizcd approximations of Eqs. (1) and (2), respectively. Note

that for simplicity only the first-order terms appear in Eqs. (4) and (5). The derivatives of the
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objective function _ can be evaluated either in terms of the derivatives _ or in terms of

the adjoint variables Ao as

or

d_o O0,'odq 0"o
- + _ (6)

db OQ db Ob

d qJo T OR t)qJo (7)d--ff= A,,b-g + 0---ff

where the derivatives _ are the solution of the linear sensitivity equation

(OU'_ dq 0rt (8)

This linear sensitivity equation results from the differentiation of Eq. (3) with respect to b, and

the adjoint variables Ao are the solution of the linear equation

[OR\ "r ( Ogio _ T
Ao= (9)

The derivatives of the side-constraint functions @ can be evaluated with expressions that are

similar to Eqs. (6) through (9).

After the most favorable direction of change Ab is found by solving Eqs. (4) and (5) with a

proper mathematical linear programming technique, the next procedure is to determine the step

sizc _, which defines the newly updated design b° as

b' = b + c_Ab (10)

The step size a serves as a relaxation factor in an iterative scheme for determining b*; it is

determined by solving a nonlinear optimum design problem (similar in form to Eqs. (1)-(3))

in which _, is the only design variable. The procedure for determining a is referred to as the



"one-dimensionalsearch" in many design optimization textbooks. The updated values of the

field variables Q*(b') tbr the new design b" in this procedure is obtained by solving the state

equations (one solution for each trial value of c0; that is,

R(Q*(b'),b*) = 0 (11)

Finally, the optimum design is achieved if the Kuhn-Tucker conditions are satisfied; if not, the

entire procedure (Eqs. (4) through (I I)) is repeated until convergence is achieved.

Generally speaking, the conventional design optimization approach of Eqs. (4) through (11)

requires on the order of possibly hundreds of design iterations to converge to the solution of

the original design optimization problem (defined previously by Eqs. (1) through (3)). The

repeated solution (to steady state) of Eq. (11) is eomputationally intensive, particularly for

three-dimensional nonlinear aerodynamic problems. This computational intensity has motivated

several studies (including the present one) with the goal of reducing this computational effort

11-1o1.

3.2 Proposed Approach For Simultaneous Aerodynamic Analysis

and Design Optimization (SAADO)

3.2.1 Derivation of SAADO Equations

The proposed new approach reformulates the design optimization problem presented in Eqs.

(1) through (3) as

which is subject to

min
*o(q,b) (12)

Q,b

oi(q,b) <__0 (i = 1,2,...,m) (13)



and the additional equality constraints

R(q,b) = 0 (14)

This formulation is referred to as simultaneous analysis and design optimization (SAADO),

which (in contrast to the conventional approach) now treats the state (field) variables as part of

the set of independent design variables and considers the state equations to be part of the set of

side constraints. Because satisfaction of the equality constraints of Eq. (14) is required only at

the final optimum solution, the steady-state aerodynamic field equations are not solved at every

design optimization iteration. As a result, the excessively large computational burden of the
i

conventional approach may be reduced significantly. However, this advantage is likely to be

offset by the large increase in the number of design variables and equality constraint functions

unless some remedial procedure is adopted.

The new method begins with a linearized design optimization problem (similar in principle

to that of Eqs. (4) and (5)), which is solved for the most favorable change in the design variables

Ab, as well as in the state (field) variables AQ; that is

t)q% A- t)_,, . b,,,i,, qJ,,(Q, b) + + (15)
AQ,Ab /-_ q "O--b--A

which is subject to

and

0_i OqJi b
qJi(q,b)+/-_AQ+/-j-b-A <0 (i= 1,2,...,m) (16)

OR OR
R(q,b) + .-;-_Aq + .-_Ab = 0 (17)

(]L}
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Equations (15), (16), and (17) are linearized approximations of Eqs. (12), (13), and (14),

respectively. Note in this formulation that R(Q,b), which is the residual of the nonlinear

aerodynamic field equations, is not required to be zero until the final optimum design is

achieved. In comparison with Eqs. (4) and (5), the mathematical linear programming problem of

Eqs. (15)-(17) becomes more computationally difficult to solve because of the dramatic increase

in the effective number of design variables and equality-constraint equations. This difficulty

is overcome by the introduction of the adjoint-variable method to remove AQ and Eq. (17)

altogether from this linear programming problem.

The derivation of this technique begins with the introduction of an arbitrary vector Ao to

augment the linearized objective function of Eq. (15) by using Eq. (17); the resulting enhanced

linearized objective function is expressed as

i9"o 0_I'OAb T [ OR OR]*o(Q,b) + -ff_-AQ + 0b + A° R(Q,b) + _--_AQ + _--_Ab (18)

if rearranged, then result is

(O*,, A,,/-)-_'rOR)A A2'R(Q, b)\0b (0_o . ,r0R_qJ,,(Q,b) + \/-_ Jr q + + + A o _-_-) Ab (19)

Then, the adjoint-variable vector Ao can be specified such that the coefficient of AQ vanishes,

which completely eliminates AQ from the enhanced objective function of Eq. (19); this result,

of course, dramatically reduces the size of the linear programming problem to be solved. Thus,

the adjoint equation for Ao is

(0R'_'I'Ao (0_o'_ T
-\oq] = \h-if]

(2O)
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and the resulting equation for the enhanced, linearized objective function becomes

(0_o . TOR'X
• o(Q,b) + AoT R(Q,b) + \--_-b- + Ao _--b-) Ab

(21)

A similar procedure must be applied to reformulate the linearized side-constraint functions of

Eq. (16). The final result is

T (O_i TOR)qJi(Q,b)+Ai R(Q,b)+\0 b +A i _ Ab_<0
(i = 1,2, ..., m) (22)

where A i are the solutions to the adjoint equations

{OR\ T (' Oeti "_T
(i = 1,2, ..., m) (23)

With AQ and Eq. (17) eliminated, the linearized optimum design problem of Eqs.

is reformulated as

(15)-(17)

min (0_o TOR'_
Ab qJo(Q, b) + AoTR(Q, b) + \ 0b + A° -_]Ab (24)

which is subject to

AIrRb)+ (Q,b)+ + A r Ab _<o (i = 1,2,..., m) (25)

After Eqs. (24) and (25) have been solved for Ab (with a suitable mathematical programming

technique), Eq. (17) can be solved to obtain AQ. A one-dimensional search is performed to

find the updated values of Q' and b'; the search procedure must solve a nonlinear optimization

problem of the form

lllill

*o(Q', b*) (26/

II



which is subject to

*i(Q*, b*) _< 0 (i = 1,2, ..., m) (27)

and

R(Q*, b*)=0 (28)

where the step size a is the only design variable. Again, note that the equality constraints (Eq.

(28)) are not required to be zero until the final optimum design; violations of these equality

constraints should simply be progressively reduced during the SAADO procedure. Therefore,

the updated Q* in this study is defined as Q* = Q + AQ*, which satisfies the first-order

approximation of Eq. (28) as

OR , ___a(Q,b) + _-_AQ + (aAb) = 0 (29)

The update for b* is given previously in Eq. (10). Note that in the one-dimensional search, Eq.

(29) need to be solved for each trial value of a; altematively, a one-time solution (per design

cycle) of the following two equations is performed:

t)R OR A b
: (30)

and

_--_AQ2 = R(Q, b) (31)

in addition, AQ* = crAQI + AQ2 tbr all a. If more than one trial value of a is needed in the

one-dimensional search, Eqs. (30) and (31) clearly provide a more efficient means of finding a

proper update of AQ* than Eq. (29).

12



3.2.2 Implementation of SAADO

Computationally, to assist in the implementation of the line-search procedure of

Eqs. (26}-(29), a merit function is constructed using the interior-penalty-function method. This

merit function is a combination of the objective, side-constraint, and aerodynamic residual equa-

tions and is given by

Ill

°P(Q,b,r)=ffto(Q,b)+rEl/*i(Q,b)+r-I/=' RT(Q,b) R (Q, b) (32)
i=l

where r is the penalty-function parameter (which is initially assumed to be unity and is

progressively reduced from one design iteration cycle to the next). The value of _, as

determined by the line-search process, is designed to ensure thai the numerical value of the

merit function is reduced when compared with its value fi'om the previous design-iteration cycle

(i.e., <P(Q*, b*, r) < ¢'(Q, b, r)).

At the final optimum design, Q* and b* are required to satisl_, not only the Kuhn-Tucker

conditions but must also reduce the residual of the aerodynamic equations to a very small

value; that is, Q* should represent a high-quality solution of the steady-state aerodynamic field

equations. One procedure tbr meeting this condition is to perlbrm some flow-solver iterations to

reduce the residual of the flow equations somewhat (thus, Q* is improved and b* is held fixed)

beibre the next design-optimi/ation iteration is started. This procedure can also be supplemented

by using an appropriate weighting coefficient [br the aerodynamic field equations in the merit

function, at each cycle in the design optimization process. These and other issues in regard to

the implementation of the SAADO algorithm are discussed later in greater detail.
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If the steady-state flow equations (Eq. (3)) are linear in Q, then a single Newton iteration

will always solve these equations exactly; in this case, Eqs. (24) and (25) become identical

to Eqs. (4) and (5), respectively. Furthermore, after Ab is fbund, Eq. (1 l) can be solved

directly for the new Q* without resorting to the approximation process described by Eq. (29).

Therefore, if the state equations are linear, then the SAADO scheme is exactly equivalent to the

conventional optimization method and no computational savings is achieved.

The proposed SAADO procedure can be summarized as tbilows:

Step I. Select an initial design b and assume an initial value of the field variables Q (e.g.,

the free-stream value).

Step 2. Set up and solve Eqs. (20) and (23) lbr the adjoint variables Ao and Ai, i = 1,

2 ..... m.

Step 3. Set up the iinearized optimization problem of Eqs. (24) and (25), and solve for Ab

with a linear programming method.

Step 4. Solve Eq. (29) or Eqs. (30) and (31) for AQ*.

Step 5. Find the step size _ with the line-search procedure described by Eqs. (26)--(31),

including use of the merit function (Eq. (32)); update the design and field variables.

Step 6. Check all convergence criteria; if the criteria are not satisfied, then return to Step

2 and use a smaller value tbr the penalty parameter r.

14



3.3 Extension to Multidimensional Flow Problems

The basic SAADO algorithm is quite general and, in principal, can be applied to any flow

problems. However, the successful extension of the SAADO algorithm to those flow problems

depends upon the particular CFD solvers used and how they are employed in iteratively solving

nonlinear flow equations such as Eq. (3), as well as linear equations such as (Eqs. (20), (23),

and, (29)). For one-dimensional and some two-dimensional flow problems, a Newton direct

solver can be used to solve these equations on current computers. However, a strict application

of Newton's method is not feasible on modem computers when solving these equations for

large two- and three-dimensional problems with the Euler or Navier-Stokes equations. An exact

construction of the true Jacobian coefficient matrix _ and a direct in-core Newton solution

strategy applied to the nonlinear flow equation (such as Eq. (3)) at each iteration is impossible on

current supercomputers for these problems because of insufficient memory. This same difficulty

also applies, of course, to the direct solution of the large linear systems (Eqs. (20), (23) and

(29)) associated with the proposed SAADO scheme. However, iterative solution of these large

linear systems of equations is practical for multidimensional problems by recasting them in

"'incremental" or "delta" form. The details of this incremental formulation and a demonstration

of the feasibility and benefits for aerodynamic problems are given in references [11-13].

The incremental iterative form, for example, of Eq. (20) is

- _-_ (AAo)m = _,OQ] (Ao)m + \-O-Q-]

(Ao)m+l = (Ao)m -I- (AAo)m (33)

15



where m is the incremental iterative index.

Eq. (23). The incremental iterative form of Eq. (29) is

An equation similar to Eq. (33) is obtained for

- _ [A(AQ*)],,, \OQ}(AQ*),,,+

(Aq*)m+l = (Aq*)m + [A(AQ')]m

+ R(Q, b)

(34)

Note that in Eqs. (33) and (34) the tilde over the Jacobian operator on the left-hand side

indicates that this operator can be approximate, whereas those on the right-hand side cannot.

Most three-dimensional CFD flow solvers typically do not construct the exact Jacobian matrix

#R.
operator ,TQ-, the idea here is to use the etticient left-hand-side operator of the existing flow

solver and construct derivative terms on the fight-hand side via automatic differentiation [14,

15]. Automatic differentiation has been applied to advanced CFD codes [16, 17] to obtain

consistent, discrete sensitivity derivatives of aerodynamic output functions with respect to input

and modeling parameters. It has not yet been applied, however, in an incremental iterative form,

where significant computational gains are expected.

For the present implementation and demonstration of SAADO, a one-dimensional flow

problem will be considered. Therefore, a Newton direct-solver method will be used to solve the

linear adjoint equations, as well as to iterate on the nonlinear flow problems.

4.0 OPTIMIZATION PROBLEMS AND NUMERICAL RESULTS

Two quasi-one-dimensional sample problems have been selected to demonstrate the SAADO

scheme; its performance on these problems will be compared with that of the more conventional

"black box" optimization scheme. One of the objectives of this study is to ensure that the
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SAADO algorithm is capableof delivering a high-quality flow solution at the end of the design-

optimization process. The effect of applying flow-solver type iterations between optimization

cycles will be studied to achieve this objective.

The first problem is a fully supersonic flow through a diverging nozzle; the second is a

transonic flow through a converging-diverging nozzle, with a normal shock in the diverging

section. These sample problems are described subsequently in more detail.

4.1 Problem Statement

In each of the two quasi-one-dimensional sample problems, a "target nozzle" shape is defined

through the a priori specification of a target value of each of the design variables; then, a fully

converged, steady-state numerical solution of the governing equations is obtained for the target

nozzle. Thus, the target flow speed fij is known at each jth grid point of the target-nozzle

geometry. Then, an initial nozzle shape (different, of course, from that of the target nozzle)

is defined by specification of an initial value for each of the design variables. In the sample

problems to be presented, the objective of the optimization procedure is to manipulate the nozzle

shape by varying the design variables such that an optimum match is obtained between the

flow-speed profile that evolves during the optimization process and the flow-speed profile of the

target nozzle. The objective function qJo is defined by using the difference between the (current)

evolving flow speed and the target flow speed at each grid point; that is,

jll|a.x

__ 1 ')

*o- (aj- .j)" 05)
j=l

where uj is the flow speed that evolves at the jth grid point and jmax is the total number of grid

points. No side constraints qJi are present in the sample problems.
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are

The flow speed uj is obtained by solving the quasi-one-dimensional Euler equations, which

0q 0F(Q)
0---_ + 0x + S(Q)= 0 (36)

where Q [p, pu, peo]T,F(Q) [pu, pu 2 + P, (peo + P)u] T, and S(Q)= dA 1,= = -T_-_tpu,

pu 2, (peo + P)u] T. In these equations, p is density, u is flow speed, P is pressure, eo is the

specific total energy (i.e., eo = e + u2/2, where e is the specific internal energy), and A(x) is the

local cross-sectional area. The ideal-gas law with a constant ratio of specific heats 7 (taken to

be !.4) is used for closure, which implies 1' = (7 - l)(pe0 - pu2/2). The governing equations

are discretized and solved numerically with the upwind flux-vector-splitting method of Van Leer

[18], which includes the use of higher order accuracy to approximate the flux terms. A more

complete discussion of these numerical procedures is presented in reference [19]. The flow

field was discretizcd with 100 grid points. For steady flow, the discretization of the governing

equations, together with the numerical treatment of the boundary conditions, results in a large

set of coupled nonlinear algebraic equations with the form of Eq. (3). In this study, the basic

procedure tbr solving the discrete nonlinear flow equations is Newton's root-finding method, or

a modified version of the same, which is described subsequently in this section.

4.2 Sample Problem 1: Supersonic Nozzle

The streamwise variation of the cross-sectional area A(x) for the fully supersonic nozzle

problem is given by

A(x) = bl + 1)2 tanh (0.8x - t)a) (0 _< x < 10) (37)

18



where bl, b2, and b3 are selected to be the design variables (i.e., b = (bl, b_, b3)T). The initial

values of these design variables are bl = 1.33, b2 = 0.30, and b3 = 3.90; their target values are

bl = 1.398, b2 = 0.347, and b3 = 4. For this fully supersonic flow problem, the Mach number on

the inflow boundary is 1.5: p, u, and P are specified and held fixed (at the free-stream values) on

this boundary and are extrapolated on the outflow boundary. In constructing the merit function

(Eq. (32)) for this problem, weighting coefficients were set to 1 (unity) for both the objective

function and the root-mean-square value of the residual of the aerodynamic equations. The

penalty-function parameter r (Eq. (32)) was updated at every optimization step by halving it.

In the computational results that follow, the new optimization scheme is compared with the

conventional black-box approach, wherein the design optimization module and the flow-analysis

module are totally independent. The design optimization software used for this was Automated

Design Synthesis (ADS) [20]. The conventional design optimization approach was employed

with gradients (derivatives of the objective function with respect to the design variables)

calculated by both one-sided finite difference (FD) and quasi-analytical (QA) differentiation of the

flow-analysis code. The method of feasible directions was used as the optimizer, and the golden-

section method was used for the one-dimensional search for the two cases above that involve the

conventional design optimization approach. In addition to the basic SAADO algorithm explained

above, two variants of this algorithm were also applied to the present sample problem to study the

effect of introducing additional flow-solver iterations between the optimization cycles. The first

variation deviates from the basic SAADO algorithm in the following manner: several Newton

iterations (three in this study) are performed on the initial guess for the field variables (which

in this case is the free stream), and then the actual design-optimization process can be started
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and continued as explained in section 3.2.2. This process means that the three Newton iterations

are introduced immediately after step 1 (section 3.2.2). This particular procedure is denoted

herein as algorithm 1. In the second variation, a few Newton iterations are introduced into

the basic SAADO algorithm after Q* (the updated field variables) are obtained to improve the

quality of the solution for b* (the updated design variables) held fixed. This means that a few

Newton iterations are introduced immediately after step 5 (section 3.2.2). This procedure is

denoted herein as algorithm 2a if one Newton iteration is added; it is denoted algorithm 2b if

two Newton iterations are added.

All results presented here were computed on a Cray-2; the flow-analysis code requires nine

Newton iterations for a complete, fully converged flow-analysis (steady-state) solution. The

design optimization algorithms were applied for 20 cycles each. Figure 1 compares the initial-

and target-velocity profiles for the nozzle (although initial values for field variables at interior

points are flee-stream values). Table 1 compares the algorithms in terms of the final objective

function, the root-mean-square value of the residual of the aerodynamic equations at the end of

the design process, the total number of equivalent Newton-Raphson (NR) iterations, the overall

computational efficiency (i.e., total CPU time)_ and the final design variables achieved. From

the results, algorithm 2b clearly gives the best overall results in terms of the magnitude of the

final objective function and the quality of the final flow solution. The other algorithms also give

good results because for most engineering purposes, a residual value of 1.0E-4 is considered

to be satisfactory. These results show that the number of intermediate Newton iterations and

their placement in the SAADO algorithm enables the user to control the residual and, hence, the

quality of the flow solution at the end of the design process.
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To study the performance of the basic algorithm, the residual and the objective function

atter each optimization cycle are plotted in Fig. 2. The detailed result shows that a global

reduction occurs in the residual as the optimization progresses, but the overall residual at the end

of the design process is considered satisfactory for engineering purposes. The effectiveness of

using intermediate Newton iterations (algorithms 2a and 2b) in achieving the previously stated

objectives is thus reiterated.

Figure 3 shows the residual history during the optimization process using algorithm 2b

superimposed on a single standard flow-solver residual history. In this plot, each peak represents

the beginning of an optimization cycle; each valley represents the end of a cycle. For the basic

algorithm, Fig. 4 shows the residual change due to changes in the first, second, and third design

variables; this residual change is substantially different than that in the similar plot shown in

Fig. 5, which is generated with algorithm 2b. The boxed points in these figures represent the

residual values at the end of an optimization cycle. A decreasing trend can be seen in the peaks

in Fig. 5, although it is not clearly distinguishable.

The final velocity profiles obtained by the SADDO algorithms are all in very good agreement

with the target-velocity profile. However, note that the sample problem does not impose any

constraint on the mass flow or the size of the nozzle and, hence, may not yield a unique solution.

That is, the optimization algorithm (depending on the initial design) can converge to any of the

local minimum points that are characteristic of the objective function. For example, in Table 1,

the final values for design variables b are changed in the direction opposite to that which would

bring them closer to their target values for all methods. Several different initial design variables

were tested with the same unconstrained objective function and SAADO scheme (algorithm 2b).

21



Each resulted in a different final design; the results are tabulated in Table 2. Figure 6 shows the

area profiles for all final designs that were generated, as well as the area profile generated for

the target. In all cases, the final flow-speed profile was extremely close to the target profile.

4.3 Sample Problem 2: Transonic Nozzle

The variation of the cross-sectional area A in the streamwise direction x in this sample

problem is given by the expression

A(x) = 1 - bix + i)_x _ (0<x< 1) (38)

where bi and _ are the design variables. The target.design variables are bi = 0.8 and b2 =

0.8, and their initial values are 0.9 and 1.2, respectively. For this transonic flow problem, the

free-stream Mach number is 0.55, and a normal shock is found in the diverging part of the

nozzle. On the inflow boundary, the entropy and stagnation enthalpy are fixed at the free-stream

values; the flow speed is extrapolated. On the outflow boundary, the density and flow speed

are extrapolated; the static pressure is held fixed (i.e., P/t'oo = 0.9 in the present sample).

Weighting coefficients of 20 for the objective function and 50 for the residual were set in the

merit function (Eq. (32)). The penalty-function parameter is updated in a manner similar to

the first sample problem.

With a strict application of Newton's root-finding method to solve the nonlinear flow

equations, the method commonly "overshoots" the root and diverges. This overestimation is

particularly true during the initial start-up phase of the solution procedure and is most commonly

experienced when higher order accurate spatial discretizations are applied to flow fields with

shocks. Typically, this problem can be overcome with the use of underrelaxation. In this
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study, an underrelaxation factor was included to initiate the flow-solver iterations; however, this

initial use of underrelaxation was progressively reduced during the iterative process in proportion

to the reduction in the average value of the residual of the flow equations. Thus, the use of

underrelaxation was progressively removed during the solution process, such that as the root (i.e.,

the steady-state flow solution) was approached the strict use of Newton's root-finding method

was recovered.

In this second sample problem, without the use of underrelaxation, the strict implementation

of the basic SAADO scheme (as outlined in section 3.2) was divergent, which was corrected

with modifications to the basic algorithm. First, basic Newton flow-solver iterations with

underrelaxation were implemented in a manner as described previously to initially reduce the

residual of the flow equations approximately two orders of magnitude (I.0E-2). Then, the

modified SAADO algorithm was begun by evaluating the adjoint-variable vector(s) (i.e., by

solving Eq. (20) (and Eq. (23) if side constraints were present)) directly without the inclusion of

any relaxation factor. After the solution of the linear programming problem (Eqs. (24) and (25))

tbr Ab, Eq. (29) is solved directly tbr AQ ° without any relaxation factor. Then, two Newton

flow-solver iterations, including the use of an underrelaxation factor that was progressively

removed (as described previously), were introduced to reduce the residual immediately after

the design changes (i.e., immediately after step 4 of section 3.2.2). After the design and state

variables were updated, three Newton-type flow-solver iterations (including the progressively

removed underrelaxation factor) were again used to improve the solution, and the new design

b* was held fixed (i.e., immediately after step 5 of section 3.2.2).
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Figure 7 compares the initial-, final-, and target-velocity profiles. The SAADO design

optimization was carried out for 78 cycles, and its results are reported in Table 3, including

the objective function, residual value, and efficiency of the scheme in terms of CPU time

and equivalent flow-solver iterations.

design process are shown in Fig. 8.

The residual history and objective function during the

From these results, the intermediate flow-solver steps

appear to provide a useful tool to control the quality of the flow solution at the end of the

optimization process. Although not explicitly shown here, note that depending on several

different combinations of weighting coefficients and the number of intermediate flow-solver

type iterations used the final results can vary slightly in terms of the optimum design and the

quality of the final flow solution that is achieved.

In Fig. 9, the residual history during the optimization process is shown superimposed on a

single standard flow-solver residual history. Figure 10 shows a sample of these residual values

at each design iteration on an expanded scale, l'he peaks and the valleys represent the beginning

and the end, respectively, of each optimization cycle. The decreasing trend in the residual is

easily discernible in Fig. 10.

5.0 CONCLUSIONS

An optimization technique for nonlinear aerodynamic problems, simultaneous aerodynamic

analysis and design optimization (SAADO), has been investigated in this study. This algorithm

enables the simultaneous reduction of the objective function and the correction of the constraint

violations; in this strategy, the constraints include the residuals of the aerodynamic equations.

This design optimization technique requires that the steady-state aerodynamic equations be
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satisfied only at the final optimum solution of the design optimization problem. This requirement

obviates the need to obtain the complete the steady-state flow solution accurately at every

optimization iteration, which is characteristic of conventional design optimization procedures and

accounts for the bulk of central processing unite (CPU) time in the entire design optimization

process.

The SAADO algorithm and its variants are successfully implemented on two quasi-one-

dimensional nozzle-flow problems, including a sample problem where a discontinuity exists (i.e.,

a normal shock) in the flow field. A substantial increase occurs in the number of design variables

and constraints when the field variables are treated as part of the set of design variables and when

the aerodynamic flow equations are considered to be part of the set of constraints; this is nullified

by the introduction of the adjoint-variable vector. Furthermore, the appropriate introduction of

direct Newton iterations (including the use of an underrelaxation factor in the design optimization

process) helps to control the value of the residual of the aerodynamic equations. Depending upon

the number of flow-solver iterations used and their placement in the design optimization scheme,

a trade-off can be achieved between the values of the residual of the aerodynamic equations (at

the end of the design process) and the objective function and the CPU time. In both sample

problems, a considerable savings in terms of equivalent Newton iterations (and, hence, overall

CPU time) is achieved with the SAADO scheme when compared with the conventional black-

box design optimization procedure.

In principle, the SAADO algorithm is extendable to large-scale multidimensional flow

problems. However, in these cases, the incremental iterative method should be employed to

solve the linear equations that are involved in this new optimization scheme.
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